ਅਭਿਆਸ ਕਰਨ ਲਈ ਇੱਕ ਚੱਕਰ ਕਵਿਜ਼ ਦਾ 10 ਮੁਫਤ ਘੇਰਾ | 2024 ਅੱਪਡੇਟ

ਕਵਿਜ਼ ਅਤੇ ਗੇਮਜ਼

ਐਸਟ੍ਰਿਡ ਟ੍ਰਾਨ 22 ਅਪ੍ਰੈਲ, 2024 8 ਮਿੰਟ ਪੜ੍ਹੋ

ਇੱਕ ਚੱਕਰ ਦੇ ਘੇਰੇ ਦੀ ਬਿਲਕੁਲ ਗਣਨਾ ਕਿਵੇਂ ਕਰੀਏ?

ਇੱਕ ਚੱਕਰ ਦਾ ਘੇਰਾ ਇੱਕ ਬੁਨਿਆਦੀ ਅਤੇ ਲੋੜੀਂਦਾ ਗਣਿਤ ਗਿਆਨ ਹੈ ਜੋ ਐਲੀਮੈਂਟਰੀ ਜਾਂ ਮਿਡਲ ਸਕੂਲ ਵਿੱਚ ਪੇਸ਼ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਚੱਕਰ ਦੇ ਘੇਰੇ ਵਿੱਚ ਮੁਹਾਰਤ ਹਾਸਲ ਕਰਨਾ ਉਹਨਾਂ ਵਿਦਿਆਰਥੀਆਂ ਲਈ ਜ਼ਰੂਰੀ ਹੈ ਜੋ ਹਾਈ ਸਕੂਲ ਅਤੇ ਕਾਲਜ ਵਿੱਚ ਗਣਿਤ ਦੇ ਵਧੇਰੇ ਉੱਨਤ ਕੋਰਸਾਂ ਨੂੰ ਅੱਗੇ ਵਧਾਉਣ ਅਤੇ SAT ਅਤੇ ACT ਵਰਗੀਆਂ ਮਿਆਰੀ ਪ੍ਰੀਖਿਆਵਾਂ ਦੀ ਤਿਆਰੀ ਕਰਨ ਦੀ ਯੋਜਨਾ ਬਣਾਉਂਦੇ ਹਨ।

ਇਸ ਲੇਖ ਵਿੱਚ ਇੱਕ ਸਰਕਲ ਕਵਿਜ਼ ਦੇ 10 ਘੇਰੇ ਨੂੰ ਇੱਕ ਚੱਕਰ ਦੇ ਘੇਰੇ, ਵਿਆਸ, ਅਤੇ ਘੇਰੇ ਨੂੰ ਲੱਭਣ ਦੀ ਤੁਹਾਡੀ ਸਮਝ ਨੂੰ ਪਰਖਣ ਲਈ ਤਿਆਰ ਕੀਤਾ ਗਿਆ ਹੈ।

ਵਿਸ਼ਾ - ਸੂਚੀ:

ਇੱਕ ਸਰਕਲ ਫਾਰਮੂਲੇ ਦਾ ਘੇਰਾ

ਇੱਕ ਟੈਸਟ ਦੇਣ ਤੋਂ ਪਹਿਲਾਂ, ਆਓ ਕੁਝ ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਨੂੰ ਮੁੜ ਵਿਚਾਰੀਏ!

ਇੱਕ ਚੱਕਰ ਦਾ ਘੇਰਾ ਕਿਵੇਂ ਲੱਭਿਆ ਜਾਵੇ
ਇੱਕ ਚੱਕਰ ਦਾ ਘੇਰਾ ਕਿਵੇਂ ਲੱਭਿਆ ਜਾਵੇ

ਇੱਕ ਚੱਕਰ ਦਾ ਘੇਰਾ ਕੀ ਹੈ?

ਇੱਕ ਚੱਕਰ ਦਾ ਘੇਰਾ ਇੱਕ ਚੱਕਰ ਦੇ ਕਿਨਾਰੇ ਦੀ ਰੇਖਿਕ ਦੂਰੀ ਹੈ। ਇਹ ਇੱਕ ਜਿਓਮੈਟ੍ਰਿਕ ਆਕਾਰ ਦੇ ਘੇਰੇ ਦੇ ਬਰਾਬਰ ਹੈ, ਹਾਲਾਂਕਿ ਪਰੀਮੀਟਰ ਸ਼ਬਦ ਸਿਰਫ ਬਹੁਭੁਜਾਂ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

ਇੱਕ ਚੱਕਰ ਦਾ ਘੇਰਾ ਕਿਵੇਂ ਲੱਭਿਆ ਜਾਵੇ?

ਇੱਕ ਚੱਕਰ ਫਾਰਮੂਲੇ ਦਾ ਘੇਰਾ ਇਹ ਹੈ:

C = 2πr

ਜਿੱਥੇ:

  • C ਘੇਰਾ ਹੈ
  • π (pi) ਇੱਕ ਗਣਿਤਿਕ ਸਥਿਰਾਂਕ ਹੈ ਜੋ ਲਗਭਗ 3.14159 ਦੇ ਬਰਾਬਰ ਹੈ
  • r ਚੱਕਰ ਦਾ ਘੇਰਾ ਹੈ

ਘੇਰਾ ਸਰਕਲ ਦੇ ਕੇਂਦਰ ਤੋਂ ਕਿਨਾਰੇ 'ਤੇ ਕਿਸੇ ਵੀ ਬਿੰਦੂ ਤੱਕ ਦੀ ਦੂਰੀ ਹੈ।

ਵਿਆਸ ਘੇਰੇ ਦਾ ਦੁੱਗਣਾ ਹੈ, ਇਸ ਲਈ ਘੇਰੇ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਵੀ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ:

C = πd

ਜਿੱਥੇ:

  • d ਵਿਆਸ ਹੈ

ਉਦਾਹਰਨ ਲਈ, ਜੇਕਰ ਇੱਕ ਚੱਕਰ ਦਾ ਘੇਰਾ 5 ਸੈਂਟੀਮੀਟਰ ਹੈ, ਤਾਂ ਘੇਰਾ ਇਹ ਹੈ:

C = 2πr = 2π * 5 cm = 10π cm

≈ 31.4 ਸੈਂਟੀਮੀਟਰ (2 ਦਸ਼ਮਲਵ ਸਥਾਨਾਂ ਤੱਕ ਗੋਲ)

ਤੋਂ ਹੋਰ ਸੁਝਾਅ AhaSlides

AhaSlides ਅਲਟੀਮੇਟ ਕਵਿਜ਼ ਮੇਕਰ ਹੈ

ਬੋਰੀਅਤ ਨੂੰ ਖਤਮ ਕਰਨ ਲਈ ਸਾਡੀ ਵਿਆਪਕ ਟੈਂਪਲੇਟ ਲਾਇਬ੍ਰੇਰੀ ਦੇ ਨਾਲ ਇੱਕ ਤਤਕਾਲ ਵਿੱਚ ਇੰਟਰਐਕਟਿਵ ਗੇਮਾਂ ਬਣਾਓ

'ਤੇ ਕਵਿਜ਼ ਖੇਡ ਰਹੇ ਲੋਕ AhaSlides ਸ਼ਮੂਲੀਅਤ ਪਾਰਟੀ ਦੇ ਵਿਚਾਰਾਂ ਵਿੱਚੋਂ ਇੱਕ ਵਜੋਂ
ਬੋਰ ਹੋਣ 'ਤੇ ਖੇਡਣ ਲਈ ਔਨਲਾਈਨ ਗੇਮਾਂ

ਇੱਕ ਚੱਕਰ ਕਵਿਜ਼ ਦਾ ਘੇਰਾ

ਪ੍ਰਸ਼ਨ 1: ਜੇਕਰ ਇੱਕ ਗੋਲਾਕਾਰ ਸਵੀਮਿੰਗ ਪੂਲ ਦਾ ਘੇਰਾ 50 ਮੀਟਰ ਹੈ, ਤਾਂ ਇਸਦਾ ਘੇਰਾ ਕੀ ਹੈ?

A. 7.95 ਮੀਟਰ

B. 8.00 ਮੀਟਰ

C. 15.91 ਮੀਟਰ

D. 25 ਮੀਟਰ

ਸਹੀ ਜਵਾਬ:

A. 7.95 ਮੀਟਰ

ਸਪਸ਼ਟੀਕਰਨ:

ਰੇਡੀਅਸ ਨੂੰ ਫਾਰਮੂਲਾ C = 2πr ਨੂੰ ਮੁੜ ਵਿਵਸਥਿਤ ਕਰਕੇ ਅਤੇ r: r = C / (2π) ਲਈ ਹੱਲ ਕਰਕੇ ਲੱਭਿਆ ਜਾ ਸਕਦਾ ਹੈ। 50 ਮੀਟਰ ਦੇ ਦਿੱਤੇ ਘੇਰੇ ਨੂੰ ਜੋੜਦੇ ਹੋਏ ਅਤੇ ਲਗਭਗ π ਤੋਂ 3.14 ਤੱਕ, ਅਸੀਂ ਰੇਡੀਅਸ ਲਗਭਗ 7.95 ਮੀਟਰ ਲੱਭਦੇ ਹਾਂ।

ਪ੍ਰਸ਼ਨ 2: ਇੱਕ ਚੱਕਰ ਦਾ ਵਿਆਸ 14 ਇੰਚ ਹੈ। ਇਸਦਾ ਘੇਰਾ ਕੀ ਹੈ?

A. 28 ਇੰਚ

ਬੀ.14 ਇੰਚ

C. 21 ਇੰਚ

ਡੀ. 7 ਇੰਚ

ਸਹੀ ਜਵਾਬ:

ਡੀ. 7 ਇੰਚ

ਸਪਸ਼ਟੀਕਰਨ:

ਕਿਉਂਕਿ ਵਿਆਸ ਰੇਡੀਅਸ (d = 2r) ਦੀ ਲੰਬਾਈ ਦਾ ਦੁੱਗਣਾ ਹੈ, ਤੁਸੀਂ ਵਿਆਸ ਨੂੰ 2 (r = d / 2) ਨਾਲ ਭਾਗ ਕਰਕੇ ਘੇਰੇ ਦਾ ਪਤਾ ਲਗਾ ਸਕਦੇ ਹੋ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ, 14 ਇੰਚ ਦੇ ਦਿੱਤੇ ਗਏ ਵਿਆਸ ਨੂੰ 2 ਨਾਲ ਵੰਡਣ ਨਾਲ ਇੱਕ ਉਪਜ ਮਿਲਦੀ ਹੈ। 7 ਇੰਚ ਦਾ ਘੇਰਾ।

ਇੱਕ ਚੱਕਰ ਦਾ ਘੇਰਾ ਲੱਭੋ
ਇੱਕ ਚੱਕਰ ਦਾ ਘੇਰਾ ਲੱਭੋ

ਪ੍ਰਸ਼ਨ 3: ਇੱਕ ਚੱਕਰ ਦੇ ਵਿਆਸ ਅਤੇ ਘੇਰੇ ਦੇ ਵਿਚਕਾਰ ਸਬੰਧ ਬਾਰੇ ਹੇਠਾਂ ਦਿੱਤੇ ਕਥਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਸੱਚ ਹੈ?

A. ਵਿਆਸ ਘੇਰੇ ਦਾ ਅੱਧਾ ਹੈ।

B. ਵਿਆਸ ਘੇਰੇ ਦੇ ਬਰਾਬਰ ਹੈ।

C. ਵਿਆਸ ਘੇਰੇ ਦਾ ਦੁੱਗਣਾ ਹੈ।

D. ਵਿਆਸ ਘੇਰੇ ਦਾ π ਗੁਣਾ ਹੈ।

ਸਹੀ ਜਵਾਬ:

A. ਵਿਆਸ ਘੇਰੇ ਦਾ ਅੱਧਾ ਹੈ।

ਸਪਸ਼ਟੀਕਰਨ:

ਵਿਆਸ ਰੇਡੀਅਸ ਦੇ 2 ਗੁਣਾ ਦੇ ਬਰਾਬਰ ਹੈ, ਜਦੋਂ ਕਿ ਘੇਰਾ ਰੇਡੀਅਸ ਦੇ 2π ਗੁਣਾ ਦੇ ਬਰਾਬਰ ਹੈ। ਇਸ ਲਈ, ਵਿਆਸ ਘੇਰੇ ਦਾ ਅੱਧਾ ਹੈ.

ਪ੍ਰਸ਼ਨ 4: ਜਿਸ ਮੇਜ਼ 'ਤੇ ਅਸੀਂ ਬੈਠਣਾ ਹੈ, ਉਸ ਦਾ ਘੇਰਾ 6.28 ਗਜ਼ ਹੈ। ਸਾਨੂੰ ਸਾਰਣੀ ਦਾ ਵਿਆਸ ਲੱਭਣ ਦੀ ਲੋੜ ਹੈ।

A. 1 ਯਾਰਡ

B. 2 ਗਜ਼

C. 3 ਗਜ਼

D. 4 ਗਜ਼

ਸਹੀ ਜਵਾਬ:

B. 2 ਗਜ਼

ਸਪਸ਼ਟੀਕਰਨ:

ਇੱਕ ਚੱਕਰ ਦੇ ਘੇਰੇ ਦੀ ਗਣਨਾ ਵਿਆਸ ਨੂੰ ਪਾਈ (π) ਨਾਲ ਗੁਣਾ ਕਰਕੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਕੇਸ ਵਿੱਚ, ਘੇਰਾ 6.28 ਗਜ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ. ਵਿਆਸ ਲੱਭਣ ਲਈ, ਸਾਨੂੰ ਘੇਰੇ ਨੂੰ ਪਾਈ ਦੁਆਰਾ ਵੰਡਣ ਦੀ ਲੋੜ ਹੈ। 6.28 ਗਜ਼ ਨੂੰ ਪਾਈ ਨਾਲ ਵੰਡਣ ਨਾਲ ਸਾਨੂੰ ਲਗਭਗ 2 ਗਜ਼ ਮਿਲਦਾ ਹੈ। ਇਸ ਲਈ, ਸਾਰਣੀ ਦਾ ਵਿਆਸ 2 ਗਜ਼ ਹੈ।

ਸਵਾਲ 5: ਇੱਕ ਗੋਲ ਬਾਗ਼ ਦਾ ਘੇਰਾ 36 ਮੀਟਰ ਹੁੰਦਾ ਹੈ। ਬਾਗ ਦਾ ਅੰਦਾਜ਼ਨ ਘੇਰਾ ਕੀ ਹੈ?

A. 3.14 ਮੀਟਰ

B. 6 ਮੀਟਰ

C. 9 ਮੀਟਰ

D. 18 ਮੀਟਰ

ਸਹੀ ਜਵਾਬ:

C. 9 ਮੀਟਰ

ਸਪਸ਼ਟੀਕਰਨ:

ਘੇਰੇ ਦਾ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਘੇਰੇ ਲਈ ਫਾਰਮੂਲੇ ਦੀ ਵਰਤੋਂ ਕਰੋ: C = 2πr। ਰੇਡੀਅਸ ਲਈ ਹੱਲ ਕਰਨ ਲਈ ਫਾਰਮੂਲੇ ਨੂੰ ਮੁੜ ਵਿਵਸਥਿਤ ਕਰੋ: r = C / (2π). 36 ਮੀਟਰ ਦੇ ਦਿੱਤੇ ਘੇਰੇ ਵਿੱਚ ਪਲੱਗ ਕਰਨ ਅਤੇ π ਦੇ 3.14 ਦੇ ਅਨੁਮਾਨਿਤ ਮੁੱਲ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ, ਤੁਹਾਨੂੰ r = 36 / (2 * 3.14) ≈ 9 ਮੀਟਰ ਮਿਲਦਾ ਹੈ।

ਸਵਾਲ 6: ਇੱਕ ਗੋਲਾਕਾਰ ਸਵੀਮਿੰਗ ਪੂਲ ਦਾ ਘੇਰਾ 8 ਮੀਟਰ ਹੁੰਦਾ ਹੈ। ਇੱਕ ਝੋਲਾ ਪੂਰਾ ਕਰਨ ਵੇਲੇ ਇੱਕ ਤੈਰਾਕ ਪੂਲ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕਰਦਾ ਹੈ?

A. 16 ਮੀਟਰ

B. 25 ਮੀਟਰ

C. 50 ਮੀਟਰ

D. 100 ਮੀਟਰ

ਸਹੀ ਜਵਾਬ:

C. 50 ਮੀਟਰ

ਸਪਸ਼ਟੀਕਰਨ:

ਇੱਕ ਤੈਰਾਕ ਇੱਕ ਗੋਦ ਵਿੱਚ ਪੂਲ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਦੀ ਦੂਰੀ ਦਾ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਤੁਸੀਂ ਘੇਰੇ ਵਾਲੇ ਫਾਰਮੂਲੇ (C = 2πr) ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋ। ਇਸ ਕੇਸ ਵਿੱਚ, ਇਹ 2 * 3.14 * 8 ਮੀਟਰ ≈ 50.24 ਮੀਟਰ ਹੈ, ਜੋ ਕਿ ਲਗਭਗ 50 ਮੀਟਰ ਹੈ।

ਪ੍ਰਸ਼ਨ 7: ਕਲਾਸ ਵਿੱਚ ਹੂਲਾ ਹੂਪ ਨੂੰ ਮਾਪਣ ਵੇਲੇ, ਗਰੁੱਪ C ਨੇ ਖੋਜ ਕੀਤੀ ਕਿ ਇਸਦਾ ਘੇਰਾ 7 ਇੰਚ ਸੀ। ਹੂਲਾ ਹੂਪ ਦਾ ਘੇਰਾ ਕੀ ਹੈ?

A. 39.6 ਇੰਚ

ਬੀ. 37.6 ਇੰਚ

C. 47.6 ਇੰਚ

ਡੀ. 49.6 ਇੰਚ

ਸਹੀ ਜਵਾਬ:

C. 47.6 ਇੰਚ

ਸਪਸ਼ਟੀਕਰਨ:

ਇੱਕ ਚੱਕਰ ਦਾ ਘੇਰਾ C = 2πr ਫਾਰਮੂਲਾ ਵਰਤ ਕੇ ਲੱਭਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿੱਥੇ r ਚੱਕਰ ਦਾ ਘੇਰਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਕੇਸ ਵਿੱਚ, ਹੂਲਾ ਹੂਪ ਦਾ ਘੇਰਾ 7 ਇੰਚ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਇਸ ਮੁੱਲ ਨੂੰ ਫਾਰਮੂਲੇ ਵਿੱਚ ਜੋੜਦੇ ਹੋਏ, ਸਾਨੂੰ C = 2π(7) = 14π ਇੰਚ ਮਿਲਦਾ ਹੈ। ਲਗਭਗ π ਤੋਂ 3.14 ਤੱਕ, ਅਸੀਂ ਘੇਰੇ ਦੀ ਗਣਨਾ 14(3.14) = 43.96 ਇੰਚ ਕਰ ਸਕਦੇ ਹਾਂ। ਸਭ ਤੋਂ ਨਜ਼ਦੀਕੀ ਦਸਵੇਂ ਤੱਕ ਗੋਲ ਕੀਤਾ ਗਿਆ, ਘੇਰਾ 47.6 ਇੰਚ ਹੈ, ਜੋ ਦਿੱਤੇ ਗਏ ਜਵਾਬ ਨਾਲ ਮੇਲ ਖਾਂਦਾ ਹੈ।

ਪ੍ਰਸ਼ਨ 8: ਇੱਕ ਅਰਧ ਚੱਕਰ ਦਾ ਘੇਰਾ 10 ਮੀਟਰ ਹੁੰਦਾ ਹੈ। ਇਸਦਾ ਘੇਰਾ ਕੀ ਹੈ?

A. 20 ਮੀਟਰ

B. 15 ਮੀਟਰ

C. 31.42 ਮੀਟਰ

D. 62.84 ਮੀਟਰ

ਸਹੀ ਜਵਾਬ:

C. 31.42 ਮੀਟਰ

ਸਪਸ਼ਟੀਕਰਨ: ਅਰਧ ਚੱਕਰ ਦੇ ਘੇਰੇ ਦਾ ਪਤਾ ਲਗਾਉਣ ਲਈ, 10 ਮੀਟਰ ਦੇ ਘੇਰੇ ਦੇ ਨਾਲ ਇੱਕ ਪੂਰੇ ਚੱਕਰ ਦੇ ਅੱਧੇ ਘੇਰੇ ਦੀ ਗਣਨਾ ਕਰੋ।

ਇੱਕ ਚੱਕਰ ਉਦਾਹਰਨ ਦਾ ਘੇਰਾ
ਇੱਕ ਚੱਕਰ ਦੀ ਉਦਾਹਰਨ ਦਾ ਘੇਰਾ

ਸਵਾਲ 9: ਬਾਸਕਟਬਾਲ ਟੀਮ 5.6 ਇੰਚ ਦੇ ਘੇਰੇ ਵਾਲੀ ਇੱਕ ਗੇਂਦ ਨਾਲ ਖੇਡਦੀ ਹੈ। ਹਰੇਕ ਬਾਸਕਟਬਾਲ ਦਾ ਘੇਰਾ ਕੀ ਹੈ?

A. 11.2 ਇੰਚ

ਬੀ. 17.6 ਇੰਚ

C. 22.4 ਇੰਚ

ਡੀ. 35.2 ਇੰਚ

ਸਹੀ ਜਵਾਬ:

C. 22.4 ਇੰਚ

ਕਥਾ:

ਤੁਸੀਂ ਇੱਕ ਚੱਕਰ ਦੇ ਘੇਰੇ ਲਈ ਫਾਰਮੂਲੇ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹੋ, ਜੋ ਕਿ C = 2πr ਹੈ। ਦਿੱਤਾ ਗਿਆ ਘੇਰਾ 5.6 ਇੰਚ ਹੈ। ਇਸ ਮੁੱਲ ਨੂੰ ਫਾਰਮੂਲੇ ਵਿੱਚ ਲਗਾਓ, ਸਾਡੇ ਕੋਲ C = 2π * 5.6 ਇੰਚ ਹੈ। C ≈ 2 * 3.14 * 5.6 ਇੰਚ। C ≈ 11.2 * 5.6 ਇੰਚ। C ≈ 22.4 ਇੰਚ। ਇਸ ਲਈ, ਹਰੇਕ ਬਾਸਕਟਬਾਲ ਦਾ ਘੇਰਾ ਲਗਭਗ 22.4 ਇੰਚ ਹੈ। ਇਹ ਬਾਸਕਟਬਾਲ ਦੇ ਆਲੇ ਦੁਆਲੇ ਦੀ ਦੂਰੀ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।

ਸਵਾਲ 10: ਸਾਰਾਹ ਅਤੇ ਉਸਦੇ ਦੋ ਦੋਸਤ ਆਪਣੇ ਇਕੱਠ ਲਈ ਇੱਕ ਗੋਲ ਪਿਕਨਿਕ ਟੇਬਲ ਬਣਾ ਰਹੇ ਸਨ। ਉਹ ਜਾਣਦੇ ਸਨ ਕਿ ਉਨ੍ਹਾਂ ਸਾਰਿਆਂ ਦੇ ਮੇਜ਼ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਆਰਾਮ ਨਾਲ ਬੈਠਣ ਲਈ, ਉਨ੍ਹਾਂ ਨੂੰ 18 ਫੁੱਟ ਦੇ ਘੇਰੇ ਦੀ ਲੋੜ ਸੀ। ਸਹੀ ਘੇਰੇ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਪਿਕਨਿਕ ਟੇਬਲ ਦਾ ਕਿਹੜਾ ਵਿਆਸ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ?

A. 3 ਫੁੱਟ

B. 6 ਫੁੱਟ

C. 9 ਫੁੱਟ

D. 12 ਫੁੱਟ

ਸਹੀ ਜਵਾਬ:

B. 6 ਫੁੱਟ

ਸਪਸ਼ਟੀਕਰਨ:

ਦਾਇਰੇ ਨੂੰ ਲੱਭਣ ਲਈ, ਘੇਰੇ ਨੂੰ 2π ਨਾਲ ਵੰਡੋ, ਸਾਡੇ ਕੋਲ r = C / (2π) r = 18 ਫੁੱਟ / (2 * 3.14) r ≈ 18 ਫੁੱਟ / 6.28 r ≈ 2.87 ਫੁੱਟ (ਨੇੜਲੇ ਸੌਵੇਂ ਤੱਕ ਗੋਲ) ਹੈ।

ਹੁਣ, ਵਿਆਸ ਦਾ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਸਿਰਫ਼ ਰੇਡੀਅਸ ਨੂੰ ਦੁੱਗਣਾ ਕਰੋ: ਵਿਆਸ = 2 * ਰੇਡੀਅਸ ਵਿਆਸ ≈ 2 * 2.87 ਫੁੱਟ ਵਿਆਸ ≈ 5.74 ਫੁੱਟ। ਇਸ ਲਈ, ਪਿਕਨਿਕ ਟੇਬਲ ਦਾ ਵਿਆਸ ਲਗਭਗ 5.74 ਫੁੱਟ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ

ਕੁੰਜੀ ਰੱਖਣ ਵਾਲੇ

AhaSlides ਸਭ ਤੋਂ ਵਧੀਆ ਇੰਟਰਐਕਟਿਵ ਕਵਿਜ਼ ਮੇਕਰ ਹੈ ਜਿਸਦੀ ਵਰਤੋਂ ਸਿੱਖਿਆ, ਸਿਖਲਾਈ ਜਾਂ ਮਨੋਰੰਜਨ ਦੇ ਉਦੇਸ਼ਾਂ ਲਈ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਕਮਰਾ ਛੱਡ ਦਿਓ AhaSlides ਤੁਰੰਤ ਮੁਫ਼ਤ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਅਨੁਕੂਲਿਤ ਟੈਂਪਲੇਟਸ ਅਤੇ ਉੱਨਤ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ!

ਅਕਸਰ ਪੁੱਛੇ ਜਾਣ ਵਾਲੇ ਸਵਾਲ

ਇੱਕ ਚੱਕਰ ਦਾ 2πr ਕੀ ਹੁੰਦਾ ਹੈ?

2πr ਇੱਕ ਚੱਕਰ ਦੇ ਘੇਰੇ ਲਈ ਫਾਰਮੂਲਾ ਹੈ। ਇਸ ਫਾਰਮੂਲੇ ਵਿੱਚ:

  • "2" ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਤੁਸੀਂ ਘੇਰੇ ਦੀ ਲੰਬਾਈ ਤੋਂ ਦੁੱਗਣਾ ਲੈ ਰਹੇ ਹੋ। ਘੇਰਾ ਚੱਕਰ ਦੇ ਦੁਆਲੇ ਦੀ ਦੂਰੀ ਹੈ, ਇਸਲਈ ਤੁਹਾਨੂੰ ਚੱਕਰ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਇੱਕ ਵਾਰ ਫਿਰ ਘੁੰਮਣ ਦੀ ਲੋੜ ਹੈ, ਇਸ ਲਈ ਅਸੀਂ 2 ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹਾਂ।
  • "π" (pi) ਇੱਕ ਗਣਿਤਿਕ ਸਥਿਰਾਂਕ ਹੈ ਜੋ ਲਗਭਗ 3.14159 ਦੇ ਬਰਾਬਰ ਹੈ। ਇਹ ਇਸ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਇੱਕ ਚੱਕਰ ਦੇ ਘੇਰੇ ਅਤੇ ਵਿਆਸ ਦੇ ਵਿਚਕਾਰ ਸਬੰਧ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।
  • "r" ਚੱਕਰ ਦੇ ਘੇਰੇ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਜੋ ਚੱਕਰ ਦੇ ਕੇਂਦਰ ਤੋਂ ਇਸਦੇ ਘੇਰੇ 'ਤੇ ਕਿਸੇ ਵੀ ਬਿੰਦੂ ਤੱਕ ਦੀ ਦੂਰੀ ਹੈ।

ਘੇਰਾ 2πr ਕਿਉਂ ਹੈ?

ਇੱਕ ਚੱਕਰ ਦੇ ਘੇਰੇ ਲਈ ਫਾਰਮੂਲਾ, C = 2πr, pi (π) ਦੀ ਪਰਿਭਾਸ਼ਾ ਅਤੇ ਇੱਕ ਚੱਕਰ ਦੇ ਜਿਓਮੈਟ੍ਰਿਕ ਗੁਣਾਂ ਤੋਂ ਆਉਂਦਾ ਹੈ। Pi (π) ਇੱਕ ਚੱਕਰ ਦੇ ਘੇਰੇ ਅਤੇ ਇਸਦੇ ਵਿਆਸ ਦੇ ਅਨੁਪਾਤ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਜਦੋਂ ਤੁਸੀਂ ਘੇਰੇ (r) ਨੂੰ 2π ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਲਾਜ਼ਮੀ ਤੌਰ 'ਤੇ ਚੱਕਰ ਦੇ ਆਲੇ ਦੁਆਲੇ ਦੀ ਦੂਰੀ ਦੀ ਗਣਨਾ ਕਰਦੇ ਹੋ, ਜੋ ਘੇਰੇ ਦੀ ਪਰਿਭਾਸ਼ਾ ਹੈ।

ਕੀ ਘੇਰਾ ਰੇਡੀਅਸ ਦਾ 3.14 ਗੁਣਾ ਹੈ?

ਨਹੀਂ, ਘੇਰਾ ਰੇਡੀਅਸ ਦਾ 3.14 ਗੁਣਾ ਬਿਲਕੁਲ ਨਹੀਂ ਹੈ। ਇੱਕ ਚੱਕਰ ਦੇ ਘੇਰੇ ਅਤੇ ਘੇਰੇ ਵਿਚਕਾਰ ਸਬੰਧ ਨੂੰ ਫਾਰਮੂਲਾ C = 2πr ਦੁਆਰਾ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਜਦੋਂ ਕਿ π (pi) ਲਗਭਗ 3.14159 ਹੈ, ਘੇਰੇ ਦਾ ਘੇਰਾ 2 ਗੁਣਾ π ਗੁਣਾ ਹੈ। ਇਸ ਲਈ, ਘੇਰਾ ਰੇਡੀਅਸ ਦੇ ਸਿਰਫ਼ 3.14 ਗੁਣਾ ਤੋਂ ਵੱਧ ਹੈ; ਇਹ ਘੇਰੇ ਦਾ 2 ਗੁਣਾ π ਗੁਣਾ ਹੈ।

ਰਿਫ ਓਮਨੀ ਕੈਕੂਲੇਟਰ | ਪ੍ਰੋ